

Identifying Drug Interaction Effects on Myopathy at the ATC Group Level

Jackson Dooley¹, Brian Lee¹, Augustin Liu¹, Lei Wang², Xia Ning², Lang Li², Li Shen^{1*}

¹ Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA ²Department of Biomedical Informatics, The Ohio State University College of Medicine, Columbus, OH 43210, USA *Please address correspondence to Li Shen PhD (Li.Shen@pennmedicine.upenn.edu)

1. BACKGROUND

3. RESULTS

- Mining high-order drug-drug interaction (DDI) induced adverse drug effects (ADEs) from electronic health record (EHR) databases is an emerging area, and very few studies have explored the relationships between DDIs.
- We previously studied a novel pharmacovigilance problem for mining directional drug interaction effect on myopathy [1] using the FDA Adverse Event Reporting System (FAERS) database.
- Given over 1,500 FDA approved drugs, the number of candidate directional ADE effects between two drug combinations could be prohibitively huge, and many of these drug combinations have zero or very few occurrences in the data.
- Since different drugs could share similar pharmacological and other properties, grouping similar drugs together and performing group-level analysis instead of drug-level analysis could dramatically reduce the problem dimensionality, boost the drug-group combination occurrences in the data, and yield high-level and interpretable results.

- Selected combinations of antecedent and consequents for ATC code combinations were analyzed and top odds ratio findings were reported (**Table 1** and **Table 2**).
- The combination of the ATC codes most present in the odds ratio top findings are shown in **Table 1**. The top finding S01H, S01A --> S01H, S01A, A02B is a two ATC code combination of local anesthetics and combinations with antibiotics which when a drug in the A02B group representing drugs for Peptic Ulcer and Gastro Osteophageal Reflux disease is added produces a drug-drug interaction that leads to a substantial increase in the risk of myopathy odds ratio = 43.093. This means that the myopathy risk for patients taking the combination of local anesthetics, combinations with antibiotics, and Peptic Ulcer and Gastro Osteophageal Reflux disease is 43.093 times higher than that for patients taking only local anesthetics and combinations with antibiotics.

Table 1: OR Top 15 Findings All ATC Combinations				Table 2: Top 15 OR Results for 1 ATC Code → 2 ATC Code				
Rank	ATC Code Antecedent	ATC Code Consequent	Odds Ratio	Rank	Antecedent ATC Code	Consequent ATC Code	Odds Ratio	
1	S01H,S01A	S01H,S01A,A02B	43.093	1	V03A	V08C,V03A	16.077	
2	J01A,J01R,R03A	J01A,J01R,R03A,A02B	20.791	2	D06B	D06B,N06A	15.643	
3	V03A,C03E,R03A,N06A	V03A,C03E,R03A,N06A,A02B	20.295	3	V08C	V08C,V03A	10.5369	
4	R05C,J01M,R03A	R05C,J01M,R03A,A02B	20.062	4	B03X	V08C,B03X	10.3946	
5	R03B,N05A,C09B,N03A	R03B,N05A,C09B,N03A,A02B	19.931	5	D06B	D06B,A02B	10.110	
6	R03D,N05C,N05A,N03A	R03D,N05C,N05A,N03A,A02B	19.907	6	V08C	V08C,B01A	9.6488	
7	G04B,C03E,N05C,C09B	G04B,C03E,N05C,C09B,A02B	19.898	7	V08C	V08C,B03X	9.0679	
8	A04A,C07F,N05B,C09B	A04A,C07F,N05B,C09B,A02B	19.663	8	JO1C	J01C,M03B	8.606	
9	J01M,C09X,N05B	J01M,C09X,N05B,A02B	19.615	9	R02A	R02A,M05B	8.5184	
10	C01D,A06A,N02B	C01D,A06A,N02B,A02B	19.397	10	V08C	V08C,C07F	7.7568	
11	C03D,R05D,C07F	C03D,R05D,C07F,A02B	19.029	11	V08C	V08C,C09B	7.5718	
12	A10A,R06A,M01A	A10A,R06A,M01A,A02B	18.421	12	B01A	V08C,B01A	7.3581	
13	B03X,R01A,C07F	B03X,R01A,C07F,A02B	18.301	13	N05A	R02A,N05A	7.3291	
14	V03A	V08C,B03X,V03A	18.275	14	M01A	R02A,M01A	6.9336	
15	V03A	V08C,V03A,B01A	17.706	15	V08C	V08C,A02B	6.8942	

Therefore, in this work, we propose to perform high order directional ADE effect analysis at the group level, using the Anatomical Therapeutic Chemical (ATC) classification system.

2. Methods

- We employed the 3rd-level ATC codes to define drug groups using their shared therapeutic properties. Each drug group was re-annotated as a new drug, and its interaction with other drugs and/or drug groups was treated just like individual drugs.
- The analysis was applied to the FAERS data (between Q4 2012 and Q2 2015), which were de-duplicated and standardized using the AEOLUS pipeline [2]. Using the frequent itemset mining FP-Growth implementation, we analyzed frequent ATC combinations in FAERS.
- As shown in **Figure 1**, we estimated the odds ratio (OR) of the directional myopathy risk from taking ATCC₁ to taking ATCC₁ U ATCC₂, where both ATCC₁ and ATCC₂ are frequent.

...

Figure 2. Drug network visualization. Significant odds ratios associated with baseline \rightarrow two ATC combinations are shown by the edge's transparency within the network. The hub

Construct Contingency Table

(G)	Exposure to ATC Code Combination	Myopathy	Non-myopathy	Total				
	$ATCC_3 = ATCC_1 \cup ATTC_2$	a = y ₃	$b = x_3 - y_3$	$a + b = x_3$				
	ATTC ₃ without at least one code in ATTC ₂	c = y ₁ - y ₃	$d = x_1 - y_1 - b$	c + d = x ₁ - x ₃				
	ATTC.	a + c = v	$b+d=x_{1}-y_{2}$	Υ.				

References:

- 1. Yao X, Tsang T, Qing Sun, Quinney S, Zhang P, Ning X, Li L, Shen L. (2020) Mining and visualizing high-order directional drug interaction effects using the FAERS database. BMC Medical Informatics and Decision Making, 20(Suppl 2):50.

Acknowledgements: Supported in part by IIS 1827472 and IIS 1622526.

manage than those discovered at the individual level.